35 research outputs found

    The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events

    Get PDF
    The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m^3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb--Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.Comment: 55 pages, 82 figure

    The STAR-RICH Detector

    Get PDF
    The STAR-RICH detector extends the particle idenfication capabilities of the STAR spectrometer for charged hadrons at mid-rapidity. It allows identification of pions and kaons up to ~3 GeV/c and protons up to ~5 GeV/c. The characteristics and performance of the device in the inaugural RHIC run are described

    Identification of High p\rm p_{\perp} Particles with the STAR-RICH Detector

    Full text link
    The STAR-RICH detector extends the particle identification capapbilities of the STAR experiment for charged hadrons at mid-rapidity. This detector represents the first use of a proximity-focusing CsI-based RICH detector in a collider experiment. It provides identification of pions and kaons up to 3 GeV/c and protons up to 5 GeV/c. The characteristics and performance of the device in the inaugural RHIC run are described.Comment: 6 pages, 6 figure

    The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events

    Get PDF
    The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb–Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.publishedVersio

    The upgrade of the ALICE TPC with GEMs and continuous readout

    Get PDF
    The upgrade of the ALICE TPC will allow the experiment to cope with the high interaction rates foreseen for the forthcoming Run 3 and Run 4 at the CERN LHC. In this article, we describe the design of new readout chambers and front-end electronics, which are driven by the goals of the experiment. Gas Electron Multiplier (GEM) detectors arranged in stacks containing four GEMs each, and continuous readout electronics based on the SAMPA chip, an ALICE development, are replacing the previous elements. The construction of these new elements, together with their associated quality control procedures, is explained in detail. Finally, the readout chamber and front-end electronics cards replacement, together with the commissioning of the detector prior to installation in the experimental cavern, are presented. After a nine-year period of R&D, construction, and assembly, the upgrade of the TPC was completed in 2020.publishedVersio

    Performance of the ALICE SPD cooling system

    No full text
    The new generation of silicon detectors for particle physics requires very reduced mass and high resistance to radiations with very limited access to the detector for maintenance. The Silicon Pixel Detector (SPD) is one of the 18 detectors of the ALICE (A Large Io Collider Experiment) experiment at the Large Hadron Collider (LHC) at CERN. It constitute the two innermost layers of the Inner Tracking System (ITS) and it is the closest detector to th interaction point. An evaporative cooling system, based on C4F10 evaporation at 1.9 bar, was chosen to extrac the 1.35 kW power dissipated by the on-detector electronics. The whole system wa extensively tested and commissioned before its installation inside the ALICE experimenta area. Since then we had to deal with a decrease of the flow in some lines of the system tha imposed severe restrictions on the detector operation. Recently, a test bench has been built in order to carry out a series of tests to reproduce the misbehaviour of the system and investigat proper actions to cure the problem. The performance of the systems and the most interesting results of the above mentioned test will be presented. \ua9 Published under licence by IOP Publishing Ltd

    Cleaning and recirculation of perfluorohexane (C6F14C_{6} F_{14}) in the STAR-RICH detector

    No full text
    A RICH detector with a CsI photo-cathode and liquid perfluorohexane radiator has been installed in the STAR experiment at RHIC. The liquid is continuously cleaned and distributed to a quartz containment vessel within the detector by a closed recirculation system. A VUV spectrometer is connected to the system which monitors the optical transparency of the liquid. This measurement provides one of the pieces of information necessary to model the number of Cherenkov photons which reach the pad plane. A description of the liquid recirculation system and the cleaning procedure for the liquid as well as the spectrometer is presented along with results of their performance. (23 refs)
    corecore